
EBG Server Education

- LXCA User Interface

Jeff Van Heuklon | RAS architect − 4/15/15

Update picture with

course product picture

(Optional) or Delete

2

Architecture of the xHMC User Interface
Web Application

REST API Driven

Architecture Concepts

Dynamic and Static Data

Browsers and Tablets

Content Overview
Initial Setup

Menu, Pods, Dashboard

Resource Uis

Jobs

Possible Issues & Triage
Potential problems

Logging location

Browser debugging

Overview for xHMC UI charts

2014 LENOVO INTERNAL. ALL RIGHTS RESERVED.

3

Web Application
Typical web application.

Browser connects to server via ip or host name using https protocol

Http results in server not found

Client requests and loads our html, css and scripts that drive the Web App UI.

Each page has unique URL and is bookmarkable

Browser back & forward buttons generally work as expected to navigate to/from content pages of the app.

REST API driven
All live content comes from REST API interfaces. (ie. List of servers, network setting values, etc...

This retrieval occurs after all the application and page scripts are loaded.

Usually will see a “loading...” icon or text on the screen while data may be getting fetched.

Note: All pages even on a busy system should load within a few seconds. Failure to load promptly could indicate a

problem

The UI usually renders the data its given very faithfully. If data values looks wrong or are missing in the UI, it very often

(but not always) means the data we're given from the REST API is also wrong.

Architecture of xClarity Administrator User Interface

2014 LENOVO INTERNAL. ALL RIGHTS RESERVED.

4

User Interace Underpinnings – aka GUI Framework

Architecturally, this is the invisible chunk of code running in the browser that is responsible for

loading and managing active visible content.

Each content section (aka widget) behaves relatively independently, interacting only with

framework.

Contains background code like event monitors, and client side inventory data storage and

caching.

Architecture of xClarity Administrator User Interface

Xclarity

Appliance UI Framework

Menu

Page

Cached PagePods

Cached Page

Cached Page

Inventory Page Controller

Event Listener Etc..

5

User Interface Content
Common top level elements like the top menu, and stats / jobs pods, pages and dialogs

Each Content sections is loaded by the framework, then either destroyed or cached with the user is no longer

viewing that “page”

Some pages are cached which will provide instant load when going back to that page.

Others are not, which will cause the page to load normally, re-rendering and fetch data anew.

Architecture of xClarity Administrator User Interface

6

Eventing notifications

The UI framework and server have a mechanism such that our web sessions “listen” for

notifications to tell us if page content changes.

When a change is detected all listening pages get notified

If a widget on screen gets notified, it takes action and refreshes.

NOTE: Not all pages dynamically refresh data, due to limitations, some pages are forced to

require the user manually refresh the content. (ie: events & jobs)

On these pages, you will see a refresh Icon:

Browser & Tablets:

Support major browsers, firefox, ie, chrome (FF23+, IE9+, Chrome, Safari)

Using our UI through a touch interface (ie. Tablets and Touchscreens) is supported.

Architecture of xClarity Administrator User Interface

7

Content Overview: Initial Setup

Login and Intial setup pages allow user to select

language

Content sections get unlocked as user completes

steps

NOTE: After create user step, the user is logged in
If the user walks away or restarts browser, they will

be redirected to login again before proceding through

the rest of the steps

Miftah Choiri

Miftah Choiri

8

Content Overview: Menu & Pods

Menu provides quick navigation to functions and important information
Note that system status and present job status is represented at a glance in the menu bar. Shown

regardless of content panel shown.

User can quickly and easily expand the status list and active and recent jobs.

9

Content Overview: Menu → Status

Drill into to status to get at a glance problem information.

Miftah Choiri

10

Content Overview: Menu → Jobs

Expand jobs to see curent and recent job activity
Clicking a job will open Job details with complete job information

Also note quick link to all jobs from the pod

Miftah Choiri

Miftah Choiri

Miftah Choiri

11

Content Overview: Dashboard

Dashboard is the default xHMC page
Functions as a quick summary of all systems

and activity

All sections on this page have quick links to

dive quickly to associated content

Clicking server section to see all servers

Contains Overview for:
All hardware

Config patterns

OS Deployment

Firmware updates

Jobs

Active sessions

Miftah Choiri

Miftah Choiri

Miftah Choiri

Miftah Choiri

Miftah Choiri

Miftah Choiri

12

Content Overview: Resource Views

Straightforward view (typical of other views)
Note actions change for IO modules,

Chassis, and other hardware types

Clicking name will take you to details

Toolbar actions include (from left to right):
Export content to csv file

Customize visible columns

Launch remote control

Power on / off / restart

Exclude events (for selection)

Unmanage rack server (rack server only)

All actions (all the above and more)

Filter list by chassis or rack

Text matching filter (all table columns)

Click the node name to dive into details

Jobs

Active sessions

13

Content Overview: Resource Views → Graphical Chassis

Reached by selecting from Chassis list view

Graphical view toolbar allows different

graphical overlays
Node status

LED states

Property values

Compliance status

Configuration patterns

Note: Tooltips change to reflect current

overlay content

Note quick links to details and available

actions

Miftah Choiri

Miftah Choiri

14

Content Overview: Resource Views → Details

Contains full list of available node information
Where customers will likely start triage for

hardware issues.

Every detail xHMC collects on nodes can be

found within

Multiple content sections available
Summary: top level details

Inventory details: details on network,

processors, memory, firmware, etc...

Alerts: affecting this node

Event log: affecting this node

Jobs: targetting this node

Lightpath: full LED details

Power and Thermal: details and

historical graphs

Configuration (config patterns)

Feature on demand keys

Miftah Choiri

Miftah Choiri

15

Content Overview: Jobs

Menu → Monitoring → Jobs

Most activities that you initiate are

tracked as jobs

All jobs do run even if the UI that initiated

them is no longer up

The jobs pod and this view can be

referenced for status on active or recent

jobs

You can expand jobs for more details

Note: This page is not auto-refreshed.

Miftah Choiri

16

Content Overview: Jobs Details

Clicking a job from the jobs view or pod will open its details

Note something like the bulk management job will list its

results per target.

At the bottom of the dialog is the log for the job.

This panel refreshes regularly to update with latest job

progress

17

Possible Issues

Unresponsive UI
Session ends in odd way may break the redirec to to login

Unknown issue causing UI to hang

SOLUTION: Refresh the browser page (F5, depending on the platform and browser)

SOLUTION +1: Clear browser cache and refresh the browser page

BTW: For any odd UI issue, its always worth tyring to refresh the browser to see if that resolves issue

And if that fails, clear cache and refresh browser
If a page should fail to load or produce and error message when loading...

Sometimes navigating to node details will produce failure if the node no longer exists

Loaded from bookmark? Node just removed from inventory …?

Other failures would require logs and additional details

Some page load failures could be an exception caught when the page loads (again shouldn't

occur... would need additional logs

18

Console FFDC data

Console log/FFDC data from user’s browsers is periodically uploaded to the LXCA

server
A couple times per minute, and at error time

This can be seen in the WebLog.txt file in the Appender folder of the FFDC .zip file

19

Console FFDC data - continued

It's worth noting the weblog file contains all logging input from all UI sessions. So there could be

crosstalk.

Also, as stated previously, there are cases where some logging or important information just doesn't

make its way back to this log file
Network hiccups

Exceptions that kill the client script execution thread.

20

UI Triage: UI Logging (in browser)

One unique feature of the user interface, is that every user (and you) has access to debugging tools

build into most browsers
IE (F12 -> dev tools), Chrome (More tools -> dev tools), Firefox (developer → Web console)

Our logging interface logs to BOTH to the browsers console log and back to the server weblog.txt

Note: Due to the way client code works,

sometimes the browser logging will

contain more information.
Some UI failures can prevent logging

from being sent to server weblog

Browser also has exception stacks

Line of code failing

Easier to read

So, are times when having access

to browser log is more helpful

When reproducing issues in house,

worth having dev tools open

21

UI Triage: More on browser tools

When re-creating possible UI issues in house, suggested to utilize the dev tools available in the

browser.
Look for exception in the console log (usually red text).

This usually indicates the UI code failed somehow.

It's also possible to leverage browser network monitoring to capture REST API traffic to inspect data

actually sent to the UI.
Particularly useful when determining if an issue is because of 'bad' data sent to the UI

Screenshots are also very useful for triage for any UI type issue.

